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Conduct a thorough investigation of published data and 

models to understand the impact of membrane color on 

cool roof efficiency and its overall impact on urban heat 

island effect

Objective
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Approach
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S. 

No.
Database

Number of 

articles
Key words and Inclusion criteria

Number of included 

papers

1 Engineering Village 178

“cool roof” AND “energy efficiency”

“cool roof” AND “urban heat island effect”

“cool roof” AND “ life cycle”

Peer reviewed, Title, Abstract

The studies were included on the basis of 

effect on energy efficiency in terms of savings 

in cooling/heating energy usage, $ savings, 

temperature reductions, urban heat island 

effect reductions.

13

2 ProQuest 287 7

3 ACM Digital Library 1 0

4 Web of Science 234 13

5 Business Source Complete 20 2

6 Academic Search Complete 97 15

7 Berkeley Lab Heat Island Group 165 14

8 Springer Link 172 9

9 IEEE 32 2

10 Wiley Online Library 71 2

11 OSTI 121 8

12 Clemson Library 313 17

Total 1,691 102

Cool Roof Studies – Energy Efficiency and Urban Heat Island Effect
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S. No. Database
Number of 

articles
Key words and Inclusion criteria

Number of included 

papers

1 Engineering Village 75

“Built Environment” AND “Life Cycle”

“Built Environment” AND “Energy 

Efficiency”, 

“Built Environment” AND “Urban Heat 

Island Effect”,

Peer reviewed, Title, Abstract

11

2 ProQuest 300 63

3 ACM Digital Library 300 12

4 Web of Science 0 0

5 Business Source Complete 50 10

6 Academic Search Complete 30 0

7 Nexis Uni 10 2

8 Springer Link 300 70

9 IEEE 75 5

10 Wiley Online Library 0 0

11 OSTI 25 5

Total 1,165 178

Built Environment Studies
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Location/ Climate/

Temperature range

Organize studies 

based on climate/ 

temperature range  of 

the location.

Study the effect of 

location (climate 

zone and 

temperature) on 

energy efficiency.

02
Property of roof

Age of the roof, 

low/steep slope roof

Adjustment of 

reflectance based on 

the age of roof.

03
Color of roof

Albedo value, solar 

reflectance

Study the effect of 

reflectance and 

albedo on energy 

efficiency of roof.

04
Duration of data 

capture

How long was the 

roof sample 

monitored?

Study the different 

duration of data 

monitoring for 

simulation and real 

world studies to draw 

limitations of the 

studies.

05

Type of roof and 

number of study 

sample.

Effect on energy 

efficiency roof type

i. TPO/EPDM/PVC

ii. Built-up Roofs

iii. Metal Roofs

iv. Asphalt Shingles

v. Concrete Roofs

vi. Clay Tiles

01
Type and Sample 

Size

Framework to document impact of Cool Roof on EE and UHIE
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Limitations / 

Findings

What are the findings 

and how are they 

supported?

List the limitations 

mentioned in the 

publication and by 

observation.

07
Effect on Energy 

Efficiency (EE)

How various roofs 

affect EE? 

Study the effect of 

various parameters 

on energy efficiency 

of the roof in terms 

of energy usage and 

temperature 

reductions.

08
Effect on Urban 

Heat Island Effect

What is the impact of 

roofs on UHIE? 

Study UHIE by 

analyzing -

i. Temperature, heat 

flux, ozone 

concentration 

reduction

ii. Annual energy 

cost savings

iii. CO2 emissions

iv. Urban Canyon 

temperature

09
Future Path

Areas of further 

exploration.

List the future path 

mentioned in the 

publications.

10

Validity of study 

methods (software or 

model)

Analyze the different 

methods used to 

conduct experiments.

06
Case Study vs. 

Simulation

Framework to document impact of Cool Roof on EE and UHIE

* Case study is synonymous with Real World study.
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Energy Efficiency
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USA, 28

Europe, 

22

Asia, 16

Other, 19

Simulation, 

58

Real 

World, 

17

Literature 

Review, 2

Types and Locations of studies

n = 77 
studies

n = 85 

Types of Studies & Location
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Number of Studies (n) - 33

Number of studies in North and South America
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Number of Studies (n) - 26

Number of studies in Europe, Africa and parts of Asia 
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Number of Studies (n) - 14

Number of studies in Australia and parts of Asia 
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Number of Studies between 

Arctic Circle and Tropic of 

Cancer (n) - 56

Number of Studies between Arctic Circle and Tropic of Cancer
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Number of Studies between 

Tropic of Cancer and 

Equator (n) - 9

Number of Studies between Tropic of Cancer and Equator
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Number of Studies between 

Equator and Tropic of 

Capricorn (n) – 5

Number of Studies between Equator and Tropic of Capricorn
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Number of Studies between 

Tropic of Capricorn and 

Antarctic Circle – 6

Number of Studies between Tropic of Capricorn and Antarctic Circle
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Standard Roof, 48

Coating, 265

Insulation change, 62

Green Roof, 7
Membrane, 32

Albedo change, 100

Simulation, 

58

Real 

World, 

17

Literature 

Review, 2

Types and Basis of Studies

S. No. Type of Simulation Model # of studies

1 Analytical Method 1

2 Autodesk Green Building Studio 1

3 Community Earth System Model 1

4 Complex Fast Fourier Transform 1

5 CoolCalkPeak 1

6 DOE 2.1 8

7 Energy Plus 21

8 Envi Met 2

9 HASP/ACLD-β 1

10 Heat Transfer Model 1

12 hygIRC-C 1

13 Integrated Environmental Solutions 2

14 Je Plus 1

15 MATLAB 1

16 MUKLIMO 3 1

17 STAR 2

18 THERB 1

19 Trnsys 7

20 WRF 4

Total 58

n = 77 
studies

n = 514 
Sample 

Size*

Types of modifications done on different roof types

• Standard Roof – Baseline case (for e.g., comparison 

of black roof with cool roof)

• Coating – coating the existing roof with cool paint

• Membrane – modification to the existing roof 

surface

• Albedo change (membrane/coating application) –

measuring effect of albedo (range 0.23 – 0.8) on EE 

• Insulation change – measuring effect on EE by 

changing insulation

• Green Roof – comparing a green roof with standard 

roof

# of Studies – 77 studies 

# of Roofs Included in the 

Studies - 509 sample size*

*Sample Size – Individual Instances of 

Roof Included in Studies
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* This graph covers data for all types of roofs and all colors of roof modifications. Energy efficiency includes both energy consumption reduction and temperature reduction.

Does the variance in Energy Efficiency with increasing 

Reflectance makes sense?
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y = 0.0023x + 0.0372
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Effect of Reflectance on Energy Efficiency* (All roofs, All colors, All units)

Outliers removed

Details in Slide 41

For every change in reflectance by 1 

unit, there is an increase of 0.23% in 

energy efficiency for all units.

n = 195 sample size

* Energy efficiency here is defined as percentage difference in energy consumption or temperature reduction. The chart does not consider months and climate zone of data capture. 
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Effect of Reflectance on Energy Efficiency* (All roofs, All colors, Energy unit)

y = 0.0024x + 0.0612
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* Energy efficiency here is defined as percentage difference in energy consumption. For e.g., KWh, KWh/sqm, KWh/sqm/year etc. The chart does not consider months and climate zone 

of data capture. 

Outliers removed

Details in Slide 41

For every change in 

reflectance by 1 unit, there is 

an increase of 0.24% in energy 

efficiency.

Study
Change in 

Reflectance
Effect 

on EE%

Study 9 1 0.14%

Study 22 1 0.28%

Study 32 1 0.60%

n = 145 sample size

Table: Example Variance in EE by unit change in reflectance
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Effect of Albedo* on Energy Efficiency** (All roofs, All colors, All units)

y = 0.3171x - 0.0628
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Albedo Range
*Albedo in Latin means whiteness

** Energy efficiency here is defined as percentage difference in energy consumption or temperature reduction. The chart does not consider months and climate zone of data capture.

Study
Change in 

Albedo
Effect 

on EE%

Study 42 0.1 1.26%

Study 58 0.1 2.00%

Study 60 0.1 2.30%

Outlier removed

For every change in albedo by 

0.1 units, there is an increase 

of 3.1% in energy efficiency.

n = 69 sample size

Table: Example Variance in EE by unit change in albedo
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Built-up Roofs
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Other - 16 

Sample size - 50

Asia - 2 
Europe - 5 

USA - 27 

White color 

roofs
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Black color 

roofs

Total No. of Studies – 17

Simulation – 13

Real World - 4

Total Area Studied – 355,047 SF

Average Area Studied – 13,150 SF

81%

19%

Simulation Real World

Types of Studies

Built-up Roofs – Area and Type of Studies

n = 17
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Location, temperature range, month and duration of data capture

No. Location Sample Size
Temperature 

Range (F)

Month study 

conducted

Duration of 

data capture

1 Beijing 2 72 - 88 July 3

2 Calgary 1 12 - 75 Jan - Dec 0*

3 California 2 48 - 85 Jan - Dec 0*

4 Chicago 1 22 - 83 July 7

5 Fargo 1 2 - 83 July 7

6 Florida 5 78 - 88 July - Aug 7**

7 France 2 65 - 77 Jun - Aug 80

8 Greece 2 72 - 90 July 20**

9 Houston 1 47 - 95 July 7

10 Jamaica 1 75 - 88 Jan - June 150

11 London 1 46 - 72 May - July 90

12 Los Angeles 1 48 - 85 July 7

13 Miami 1 62 - 90 7 July

No. Location Sample Size
Temperature 

Range (F)

Month study 

conducted

Duration of 

data capture

14 Minneapolis 1 9 - 83 July 7

15 Montreal 9 9 - 79 Jan - Dec 0*

16 New Jersey 1 26 - 86 Aug/Jan 2**

17 New York 1 28 - 85 July 1**

18 Phoenix 5 45 - 107 Jan - Dec 0*

19 Saskatoon 1 -3 - 78 Jan - Dec 0*

20 Seattle 2 37 - 79 Jan - Dec 0*

21 St. Johns 1 19 - 69 Jan - Dec 0*

22 Toronto 2 17 - 78 Jan - Dec 0*

23 Tucson 4 76 - 100 July 10

24 Vancouver 1 36 - 83 Jan - Dec 0*

25 Wilmington 1 37 - 89 Jan - Dec 0*

*0 days assumed 365 days of analysis (all simulation-based)

**Real world studies

17 studies 50 sample size
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1

N – Roof color not mentioned   W – White color roof   G – Gray color roof 

5

• 2 modifications 

– cool paint with 

and without 

insulation. *0% 

shows the 

baseline case 

with no 

insulation.

• 1 modification – 7 locations in USA and Canada –

cool paint coating on Built-up Roof – Seattle has 

abnormal value of 26% reduction in temperature – no 

details on this value

• A smaller baseline value of temperature of a standard 

roof yields in higher % reduction in temperature. 

• 3 modifications – Montreal - insulation with 

changing solar reflectance show net annual 

energy savings.

• The importance of reflectance overweighs the 

importance of insulation level in roof design.

• Low solar reflectance with high level 

insulation is best design for cold climate like 

Montreal.

• Beijing – warm 

temperate zone

• For every change 

in reflectance by 

1 unit there is 

0.26% of 

temperature 

reduction.

3

• Coating gray 

roof with white 

cool paint to 

increase 

reflectance from 

17.2 to 89 in 

Greece.

4

#1 to #5 – Individual Studies

                                                                          25



0

1

2

3

4

5

6

7

8

A
K

C
T

D
E

M
A

M
D

M
E

N
H N
J

N
Y

P
A R
I

V
T

C
A

C
O

D
C IA ID M
I

M
N

M
T

N
D

N
E

N
V

O
R

S
D

W
A

W
I

W
Y IL K
Y

M
O

O
H

T
N

W
V

A
L

A
R

A
Z

F
L

G
A

H
I

IN K
S

L
A

M
S

N
C

N
M

O
K

S
C

T
X

U
T

V
A

Annual cooling energy savings KWh/sqm Energy cost savings $/sqm CO2 reduction kg/sqm

Built-up roof – Effect of albedo change from 0.2 to 0.55 [Levinson et. al, 2009] 

Cold Temperate Subtropical Warm

• Simulation based study – study the effect of modification of roof albedo from 0.2 to 0.55 with the use of cool white paint

• Alaska – coldest state – lowest annual cooling energy savings in KWh/sqm

• Arizona – hottest state – highest annual cooling energy savings in KWh/sqm
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Limitations and Future Path

Limitations by Observation

• Mostly simulation-based studies.

• Majority of the studies utilize minimal data capture

duration during specific months to draw conclusions for

annual roof performance.

• Data duration capture and the corresponding analysis

focused mostly during summer months.

• Studies focused during summer months show higher energy

savings and consideration of heat penalty during the winter

season are not clarified/considered in all studies.

• Not all studies account for impact of insulation thickness on

energy efficiency.

Limitations by Publications

• During the summer, the building was naturally ventilated

and influenced by indirect effects that were not assessed in

the study (Bozonnet et al., 2011)

• The results in the study apply to a specific roofing type and

climatic conditions (Saber et al., 2012)

• The study limits to one building and assumes that indirect

rooftop cooling will impact the whole building (Virk et al.,

2015)

Future Path by Publications

• The model can be used to measure cool roof effect on similar school building typologies (Stavrakakis et al., 2016)

• Further study is required to account for moisture transfer in the whole building to accurately determine the effect on energy

performance (Saber et al., 2012)

• Additional investigation to consider future weather including climate change for different regions. Consideration of parameters like

thermal emittance and roughness of roof membrane to evaluate their importance in affecting energy performance (Hosseini et al.,

2017)

• Further research to understand how multiple cool roofs will impact local air temperatures and the impact of rooftop cooling on street

level air temperatures (Virk et al., 2015)

• Development of roofing materials resistant to solar reflectance degradation (Parker, 2002)
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Metal Roofs
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Other - 29 

Sample size - 36

Total No. of Studies – 8

Simulation – 6

Real World - 2

Total Area Studied – 172,623 SF

Average Area Studied – 6,165 SF

Types of Studies

Metal Roofs – Area and Type of Studies

Asia - 1 
Europe - 3 

USA - 3 

86%

14%

Simulation Real WorldWhite color 

roofs
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Reflectance

n = 8
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Location, temperature range, month and duration of data capture

No. Location Sample Size
Temperature 

Range (F)

Month study 

conducted

Duration of 

data capture

1 Bahrain 1 85 - 100 June 7

2 Darwin 2 68 - 93 Nov - Aug 270

3 Brisbane 2 53 - 82 Nov - Aug 270

4 Alice Springs 2 43 - 93 Nov - Aug 270

5 Dubbo 2 39 - 82 Nov - Aug 270

6 Sydney 2 48 - 74 Nov - Aug 270

7 Melbourne 6 46 - 72 January 4**

8 Canberra 2 34 - 74 Nov - Aug 270

9 Toronto 1 36 - 80 Nov - Aug 270

10 Montreal 1 32 - 77 Nov - Aug 270

No. Location Sample Size
Temperature 

Range (F)

Month study 

conducted

Duration of 

data capture

11 Madrid 1 43 - 83 Nov - Aug 270

12 Barcelona 1 54 - 85 Nov - Aug 270

13 Bilbao 1 46 - 79 Nov - Aug 270

14 Sacramento 1 46 - 93 Nov - Aug 270

15 Manaus 4 75 - 92 Jan - Dec 0*

16 Curitiba 4 50 - 79 Jan - Dec 0*

17 California 1 52 - 74 May - Oct 190

18 Florida 1 62 - 90 July 7**

19 Ghana 1 76 - 89 Jan - June 150

*0 days assumed 365 days of analysis (all simulation-based)

**Real world studies

8 studies 36 sample size
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Metal Roofs – Effect of Reflectance on Energy Efficiency
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• Cool paint modification – different climate 

zones all over Australia

• Temperate and cold climates (blue) – less 

baseline case – more percentage savings but 

less energy consumption reduction.

• Warmer climates (yellow) – more base case –

less percentage savings but more energy 

consumption reductions.

• Cool paint modification – different climate zones all over Australia, 

Canada, USA and Europe

• In colder climates, baseline value of energy consumption of standard roof 

is a low value which leads to higher % reductions but low energy 

consumption reduction.

• In warmer climates, baseline value of energy consumption of standard roof 

is a high value which leads to lower % reduction but higher energy 

consumption reduction..

• Inconsistent climate zones, locations, cool temperature vs hot temperature 

comparisons lead to confounding trends.

• Cool Paint and Elastomeric Coating with and 

without thermal insulation – different locations in 

Africa

• Higher percentage difference in external surface 

temperature with insulation in equatorial climates 

(Manaus) as against sub-tropical climate (Curitiba).

• The study has not looked at comparison with dark 

roof in sub-tropical climate zones.

Sacramento – outlier
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Limitations and Future Path

By Observation

• The climate zone and location of the study has an impact on

the effect of cool roofs on energy efficiency.

• Studies focus mostly during summer months show higher

energy savings and consideration of heat penalty during the

winter season are not clarified/considered on all studies.

• Mostly simulation-based studies

• Majority of the studies utilize minimal data capture

duration during specific months to draw conclusions for

annual roof performance.

• Not all studies account for impact of insulation thickness on

energy efficiency.

By Publication

• The study is limited to a single building model and more

work is required to establish the parameters to determine

the benefit like cost investment and return on investment.

The same process needs to be implemented for other

commercial building types (Seifhashemi et al., 2018)

• The measurement period was limited to the month of

September and October which are transitional cooling

months and the results are limited to the measurement

period only (Akbari et al., 1992)

Future Path

• The role of cool roofs on all building types in a changing climate and the impact of changing climate on the effectiveness of cool

roof coatings (Seifhashemiab et al., 2018)

• Cost benefit analysis for different climate zones (Filho et al., 2014)

• Study the climate-related heating interactions and development of roofing materials that are resistant to solar reflectance

degradation. (Parker, 2002)
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Metal Roofs – Effect of Reflectance on Energy Efficiency (All colors)

y = 0.0019x + 0.0018
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Insufficient data to draw conclusions.
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TPO, EPDM and others
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TPO, EPDM and others – Area and Type of Studies

75%

25%

Simulation Real World

Total No. of Studies – 4

Simulation – 3

Real World – 1

Other - 12 

Total Area Studied – 141,240 SF

Average Area Studied – 35,310 SF

White color roofs 

in case study
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Insulation Thickness 

(mm)

Reflectance

18

Asia - 20 
Europe - 16 

USA - 135 

Sample size - 183

Types of Studies

Reflectance of TPO and 

EPDM membranes used in 

slide #37

White TPO Reflectance – 65.7

Black EPDM Reflectance – 6.5

Reflectance of TPO 

membranes used in slide #39

White Reflectance – 68

Tan Reflectance – 59

Gray Reflectance – 42

n = 4
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Location, temperature range, month and duration of data capture

No. Location
Sample 

Size

Temperature 

Range (F)

Month 

study 

conducted

Duration 

of data 

capture

1 Albany 1 17 - 83 Jan - Dec 0*

2 Albuquerque 3 27 - 93 Jan - Dec 0*

3 Alexandria 1 29 - 88 Jan - Dec 0*

4 Athens 1 42 - 92 Jan - Dec 0***

5 Atlanta 6 35 - 89 Jan - Dec 0*

6 Austin 1 43 - 97 Jan - Dec 0***

7 Baltimore 6 30 - 89 Jan - Dec 0*

8 Boulder 3 22 - 87 Jan - Dec 0*

9 Charlotte 3 33 - 89 Jan - Dec 0*

10 Chicago 8 22 - 83 Jan - Dec 0***

11
Cocoa 

Beach
1 55 - 88 Jan - Dec 0***

12 Davis 1 39 - 93 Jan - Dec 0***

13 Duluth 3 7 - 78 Jan - Dec 0*

No. Location
Sample 

Size

Temperature 

Range (F)

Month 

study 

conducted

Duration 

of data 

capture

14 Fairbanks 3 -13 - 73 Jan - Dec 0*

15 Fort worth 3 37 - 97 Jan - Dec 0*

16 Fresno 3 39 - 99 Jan - Dec 0*

17 Gilroy 1 39 - 83 Jan - Dec 0***

18 Helena 3 13 - 86 Jan - Dec 0*

19 Houston 3 47 - 95 Jan - Dec 0*

20 Illinois 2 22- 83 Jan - Dec 0***

21 Jacksonville 3 46 - 90 Jan - Dec 0*

22 Las Vegas 3 38 - 105 Jan - Dec 0*

23 Los Angeles 3 48 - 85 Jan - Dec 0*

24 Miami 6 62 - 90 Jan - Dec 0*

25 Minneapolis 3 9 - 83 Jan - Dec 0*

No. Location
Sample 

Size

Temperature 

Range (F)

Month 

study 

conducted

Duration 

of data 

capture

26 Nashville 3 31 - 90 Jan - Dec 0*

27 New York 2 28 - 85 Jan - Dec 0***

28 Newark 3 26 – 86 Jan - Dec 0*

29 Phoenix 3 45 - 106 Jan - Dec 0*

30 Portland 6 36 - 84 Jan - Dec 0***

31 Sacramento 6 39 - 94 Jan - Dec 0***

32
San 

Francisco
3 45 - 72 Jan - Dec 0*

33 San Jose 1 43 - 82 Jan - Dec 0***

34 Scottsdale 3 44 - 106 Jan - Dec 0***

35 Seattle 3 37 - 79 Jan - Dec 0*

36 Virginia 20 29 - 89 May/Aug 2

37 Washington 2 29 - 88 Jan - Dec 0***

*Simulation based studies, the study provides energy savings for 365 days for unknown duration of data capture

*** Simulation based studies, the study provides energy savings for 50 year LCCA for unknown duration of data capture
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Measure of temperature from roof surface (White vs Black), [Grant et. al, 2017]
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2 modifications on existing roof – Black EPDM and White TPO. The graph shows the temperatures of the membrane and air temperature at 

heights of 8, 14, 23 and 86 cms. above the roof surface. The study was carried out in Virginia during May and August. 
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3 TPO membranes of 3 different colors – White with reflectance 68, Tan with reflectance 59 and Gray with reflectance 42 were used on a big 

box retail store in 13 locations over USA to calculate annual energy savings in USD. Duration 365* days.

• Simulation-based study, not real world.

• Electric Heating and Cooling

Savings by color of roof for different locations [Taylor et. al, 2019]

(White vs Tan vs Gray)
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Economic comparison of white, green and black roofs [Sproul et. al, 2014] 

A study focused on life-cycle cost of green roof vs. dark roof vs. white roof with age of roof and maintenance cost as factors to evaluate heating / cooling 
savings by area per year 
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Case Study - Location, temperature range, month and duration of data capture [Synnefa et. al, 2007]

No. Location
Number of 

Samples

Temperature 

Range (F)

Month study 

conducted

Duration of 

data capture

1 Athens 2 42 - 92 Jan - Dec 0*

2 Thessaloniki 2 34 - 90 Jan - Dec 0*

3 Chania 2 47 - 88 Jan - Dec 0*

4 Sevilla 2 42 - 68 Jan - Dec 0*

5 Barcelona 2 40 -83 Jan - Dec 0*

6 Palermo 2 48 - 87 Jan - Dec 0*

7 Rome 2 37 - 89 Jan - Dec 0*

8 Nice 2 41 - 82 Jan - Dec 0*

9 Abu Dhabi 2 60 - 104 Jan - Dec 0*

10 Baghdad 2 41 - 112 Jan - Dec 0*

11 Riyadh 2 49 - 110 Jan - Dec 0*

12 Damascus 2 34 -96 Jan - Dec 0*

13 New Delhi 2 46 -103 Jan - Dec 0*

14 Beijing 2 17 - 88 Jan - Dec 0*

No. Location
Number of 

Samples

Temperature 

Range (F)

Month study 

conducted

Duration of 

data capture

15 Tokyo 2 36 - 87 Jan - Dec 0*

16 Teheran 2 34 - 97 Jan - Dec 0*

17 Karachi 2 55 - 94 Jan - Dec 0*

18 Ankara 2 23 - 87 Jan - Dec 0*

19 LA 2 48 - 85 Jan - Dec 0*

20 New York 2 28 - 85 Jan - Dec 0*

21 Miami 2 62 - 90 Jan - Dec 0*

22 Mexico City 2 43 - 80 Jan - Dec 0*

23 Casablanca 2 49 - 79 Jan - Dec 0*

24 Cairo 2 50 -96 Jan - Dec 0*

25 Alexandria 2 29 - 88 Jan - Dec 0*

26 Johannesburg 2 36 - 78 Jan - Dec 0*

27 Sydney 2 40 - 60 Jan - Dec 0*

*Simulation based studies, duration of data analysis 365 days.

1 study 54 sample size
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Effect of Reflectance and Insulation on Energy Efficiency [Synnefa et. al, 2007]

• This is 1 study, simulation based

• Same insulation thickness

• Two different levels of solar reflectance

• Global study in 27 cities

• No roof type mentioned – 100 sqm baseline case
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There is lack of details on methodology to calculate baseline case. The study has an abnormal value for Mexico city (93% and 76% savings) as the 

baseline case was 9 kWh/sqm., whereas the range of baseline case for the rest of the 26 cities is 27.1 – 265.4 kWh/sqm and average is 77.22 kWh/sqm, 

the case for Mexico city is significantly lower than the lower range.
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Limitations and Future Path

Future Path by Publication

• The study can promote the use of cool materials and the adoption of high albedo measures in building energy codes and urban

planning regulations (Sproul et al., 2014)

Limitations by Observation

• All simulation-based studies

• Studies provide annual simulation-based analysis without

clarifying the impact of different months/seasons

• A specific study provided the impact of cool roof on

surface temperature without any correlation to the effect on

energy efficiency

• Small sample size by climate zone, months and location.

• For better findings, study needs to be more focused by

region

Limitations by Publications

• The lessons learned from the comparison show that the

choice between cool, green and standard roofs is individual

and depends on case to case. Factors like climate, rainfall,

energy prices, stormwater management play a role in

influencing the results of the comparison (Sproul et al.,

2014)

• The building type is not representative of a typical building

in all tested locations. The purpose of the study was to

report cooling energy savings by changing the solar

reflectance of the roof comparatively for various climatic

conditions (Synnefa et al., 2007)
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Concrete Roofs
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Concrete Roofs – Area and Type of Studies
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Location, temperature range, month and duration of data capture

*0 days assumed 365 days of analysis (all simulation-based)

**Real world studies

22 studies 91 sample size

No. Location Sample Size
Temperature 

Range (F)

Month study 

conducted

Duration of 

data capture

1 Ahmedabad 4 55 - 106 Jan - Dec 0*

2 Bahrain 4 85 - 100 June 7

3 Bangalore 4 61 - 93 Jan - Dec 0*

4 Cairo 3 74 – 96 July 5

5 Chongqing 2 77 - 93 August 1

6 Greece 4 72 - 90 July 15

7 Hyderabad 8 61 - 102 Jan - Dec 0*

8 Italy 22 65 - 85 April - Sept 30

9 Italy 2 55 - 85 Aug - Sept 12**

10 Jamaica 1 73 - 89 Jan - Dec 0*

11 London 2 46 - 66 May - Sept 150

12 Melbourne 2 60 - 79 January 3

No. Location Sample Size
Temperature 

Range (F)

Month study 

conducted

Duration of 

data capture

13 Mumbai 4 66 - 92 Jan - Dec 0*

14 New Delhi 4 46 - 103 Jan - Dec 0*

15 Osaka 6 58 - 76 May - Oct 180

16 Palermo 4 74 - 87 July 5

17 Pantnagar 2 58 - 91 Jan - June 180**

18 Phoenix 1 75 - 105 Aug - Sept 40

19 Rome 1 55 - 85 Summer 1

20 Shillong 4 40 - 73 Jan - Dec 0*

21 Sicily 2 60 - 80 May - Sept 110

22 Singapore 4 76 - 89 Jan - Dec 0*

23 Turin 1 31 - 84 Summer 1
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1 4 modifications - lightweight concrete screed, bituminous roofing felt, light and dark colored tile. Insulation kept constant, light tile - maximum reflectance - maximum energy efficiency.

2 3 modification – standard concrete roof vs white color cool paint roof vs metallic reflective coating roof. Cool paint shows maximum energy efficiency.

3 3 modifications – 4 standard roof, 3 green roof and 3 cool roof. Increase in insulation thickness increases energy efficiency.

4 8 modifications – Black reflectance 20 and white reflectance 80 with 4 insulation thicknesses. White with 0 insulation gives maximum energy efficiency as study is done in April.

4

Energy Temp. Energy EnergyEnergy Temp. Energy Energy Energy Energy Temp. Energy

N – Roof color not mentioned   W – White color roof   G – Gray color roof  B – Brown color roof  M – Metallic reflective coating
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Concrete Roofs – Effect of Reflectance on Energy Efficiency
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Limitations and Future Path

Limitations by Observation

• Studies must consider the effect of thermal insulation

thickness which plays a critical role in reducing heat gains

in hotter climates and minimizing heat energy loss in colder

climates.

• Mostly simulation-based studies

• Studies focus mostly during summer months show higher

energy savings and consideration of heat penalty during the

winter season are not clarified/considered on all studies.

• Majority of the studies utilize minimal data capture

duration during specific months to draw conclusions for

annual roof performance.

• Multiple variables in the studies have been changed

simultaneously resulting in confounding findings

Limitations by Publications

• Application of cool roofs leads to a decreased comfort in

winter months but the benefits from the summer months

lead to a net increase in comfort (Arumugam et al., 2014)

• The building prototypes are typical of the location and

represent savings for a specific building computed (Gao et

al., 2014)

• The study did not account for ageing, soiling and

weatherability of the cool material during the life span of

the building (Romeo et al., 2013)

Future Path by Publications

• Further study can include the increase in occupant comfort with the use of cool roofs and the amount by which soiling degrades the

albedo of cool roofs. Yafeng Gao et al. (2014)

• Cost benefit analysis of the implementation of cool roofs. Elisa Di Giuseppe et al. (2017)

• Evaluating the benefits of widespread use of cool roof technology throughout the region including the impact on urban heat island

effect and environmental impact. J.H. Jo et al. (2009)
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Asphalt Shingles
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Location, temperature range, month and duration of data capture

No. Location
Sample 

Size

Temperature 

Range (F)

Month 

study 

conducted

Duration 

of data 

capture

1 Abu Dhabi 1 60 - 104 Jan - Dec 0*

2 New Delhi 1 46 - 103 Jan - Dec 0*

3 Rio de Janeiro 1 65 - 88 Jan - Dec 0*

4 Thessaloniki 1 34 - 90 Jan - Dec 0*

5 Sydney 1 40 - 60 Jan - Dec 0*

6 Mexico City 1 43 - 80 Jan - Dec 0*

7 San Francisco 2 45 - 72 Jan - Dec 0*

8 Paris 1 46 - 77 Jan - Dec 0*

9 Beijing 2 17 - 88 Jan - Dec 0*

10 Tampere 1 13 - 71 Jan - Dec 0*

11 Moscow 1 12 - 76 Jan - Dec 0*

12 Atlanta 3 65 - 88 Jun - Aug 90

13 California 3 66 - 84 May - Oct 180

14 Changsha 1 36 - 91 Jan - Dec 0*

15 Chicago 2 22 - 83 Jan - Dec 0*

No. Location
Sample 

Size

Temperature 

Range (F)

Month 

study 

conducted

Duration 

of data 

capture

16 Chongqing 1 44 - 94 Jan - Dec 0*

17 Dallas 2 39 - 96 Jan - Dec 0*

18 Davis 1 54 - 89 Jun - Sept 120**

19 Denver 1 55 - 90 Jun - Aug 90

20 Detroit 1 60 - 80 Jun - Aug 90

21 Florida 12 78 - 88 Jul - Aug 7**

22 Fortsworth 1 73 - 98 Jun - Aug 90

23 Fresno 1 62 - 97 Jun - Aug 90

24 Gilroy 1 52 - 86 Jun - Sept 120**

25 Hong Kong 1 57 - 89 Jan - Dec 0*

26 Hotan 1 18 - 89 Jan - Dec 0*

27 Houston 3 74 - 91 Jun - Aug 90

28 Kunming 1 37 - 75 Jan - Dec 0*

29 Los Angeles 3 62 - 85 Jun - Aug 90

30 Lanzhou 1 11 - 83 Jan - Dec 0*

No. Location
Sample 

Size

Temperature 

Range (F)

Month 

study 

conducted

Duration 

of data 

capture

31 Miami 3 77 - 88 Jun - Aug 90

32 Minneapolis 1 59 - 80 Jun - Aug 90

33 New Orleans 2 47 - 92 Jan - Dec 0*

34 New York 3 64 - 84 Jun - Aug 90

35 Philadelphia 2 26 - 87 Jan - Dec 0*

36 Phoenix 3 76 - 105 Jun - Aug 90

37 Rome 1 37 - 89 Jan - Dec 0*

38 San Jose 1 56 - 81 Jun - Sept 120**

39 Seattle 1 54 - 72 Jun - Aug 90

40 Shanghai 1 35 - 90 Jan - Dec 0*

41 St. Louis 1 67 - 88 Jun - Aug 90

42 Toronto 3 17 - 78 Oct - Apr 210

43 Turpan 1 14 - 103 Jan - Dec 0*

44 Washington 2 29 - 88 Jan - Dec 0*

45 Wuhan 1 34 - 91 Jan - Dec 0*

10 studies 79 sample size*0 days assumed 365 days of analysis (all simulation-based)

**Real world studies
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Thermal Insulation (cm) Reflectance Effect on EE

• Study tries to define optimum level of insulation and solar 

reflectance for various climate zones.

• White roof  -varied insulation thickness and solar reflectance

• 12 different cities over the world with varied climate zones

• Hot (orange) – 9-11 cms of insulation to reduce energy 

consumption

• Warm (yellow) – negligible insulation is optimum

• Cold (blue) – 25 cms of insulation to minimize heating 

demand

Asphalt Shingles – Effect of Reflectance and Insulation on Energy Efficiency

Energy EnergyTemp

E
ff

ec
t 

o
n

 E
n

er
g

y
 E

ff
ic

ie
n

cy
 %

R
ef

le
ct

a
n

ce
 a

n
d

 I
n

su
la

ti
o

n
 (

cm
)

• Impact of roof reflectance change from 10 

to 70 identified from the chart from 9-17% 

by 10 locations in China. 

• White roof modification in 14 cities in USA

• Average of baseline case is 2.8 kWh/sqf for 10 cities apart from 

the outliers Detroit (26%), Los Angeles (58%), San Francisco 

(31%), Denver (31%).

• Average of the base case for 4 outliers is 0.6 kWh/sqf which is 

significantly lower than 2.8 kWh/sqf.

• A small change in lower baseline value creates more % savings 

but less energy consumption reduction in comparison to a larger 

baseline value.
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Asphalt Shingles – Effect of Albedo on Energy Efficiency [Akbari et. al, 1999]
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• Simulation based study – study the effect of modification of roof albedo from 0.25 to 0.55 with the use of cool white paint in 11 cities in USA

• Annual energy % savings increase as climate gets colder 

• In colder climates, baseline value of energy consumption of roof with 0.25 albedo is a low value which leads to higher % reductions but low energy 

consumption reduction.
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Limitations and Future Path

By Observation

• Mostly simulation-based studies

• Studies comparing energy cost savings by different

locations without normalizing the energy cost for that

region will not produce meaningful comparisons

• Studies focus mostly during summer months show higher

energy savings and consideration of heat penalty during the

winter season are not clarified/considered on all studies.

• Majority of the studies utilize minimal data capture

duration during specific months to draw conclusions for

annual roof performance.

By Publication

• Dark roofs increase the opportunity for savings and

another factor that affects the monetary savings is the local

cost of electricity. High cost of electricity causes more

dollar savings in that city (Akbari et al., 1999)

• The measurement period was limited to the month of

September and October which are transitional cooling

months and the results are limited to the measurement

period only (Akbari et al., 1999)

• The effect of lightening the color of the roof on heating

energy savings is nil because in the winters, the roof gets

covered in snow (Akbari et al., 1999)

Future Path

• Implementation programs for white roofs should be designed to emphasize the roof types that cover the largest area in the city.

Built-up roofs and modified bitumen can be coated with white reflective coating with a little installation cost. For asphalt shingles, it

is an additional expense and is not covered in installation, voids the warranty, it is necessary to induce shingle manufacturers to sell

high-albedo shingles which shed dirt (Rosenfeld et al., 1995)

• Investigation of the economic and life cycle benefits of installing cool roofs in varying climatic conditions (Piselli et al., 2019)

• Development of roofing materials resistant to solar reflectance degradation (Parker, 2002)
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Conclusions* - Effect of Membrane Color on Energy Efficiency

BUILT UP ASPHALT SHINGLES TPO, EPDM, PVC METAL CONCRETE

R
E

F
L

E
C

T
A

N
C

E

Solar reflectance plays an important

role in the effect of cooling demand

Roof thermal insulation with cool

roof does not allow dissipation of

internal heat gains, thus increasing

cooling demand for building in “Hot

& Mild Climate” zones

Increased levels of reflectivity

increase the amount of annual energy

savings.

Cool Roofs with high reflectivity in

equatorial climates are effective in

contrast to sub-tropical climates

(reversing the direction of heat flux)

A white coated roof with no

insulation gives maximum energy

efficiency.

AND

As albedo increases energy efficiency

increases.

E
N

E
R

G
Y

  
S

A
V

IN
G

S Temperature variation with a lower

baseline value represents higher %

savings in comparison to a higher

baseline value
A small change in lower baseline

value creates more % savings but less

energy consumption reduction in

comparison to a larger baseline value

Roofing life cycles are normally

measured in terms of decades and

therefore an entire Life-Cycle

Analysis is essential to evaluate

energy efficiency.

For temperate and cold climates with

less baseline case more percentage

savings but less energy consumption

reduction.

A combination of highly reflective

roofing and thermal insulation is

more effective in reducing the

thermal load as compared to

reflective roofing or insulation alone

% reduction in temperature as a result

of a change in the roofing membrane

color leads to inconsistent results

The heating load decreased as the

insulation thickness increased from

25mm to 100 mm.

IN
S

U
L

A
T

IO
N

Insulation in roofing membrane

increases the energy efficiency

Roof thermal insulation plays an

important role in extreme climatic

conditions especially “Cold

Climates”

Roof insulation is critical for all

climates. The impact of roof

reflectivity is equally important for

warm climates.

Higher percentage difference in

external surface temperature with

insulation in equatorial climates

(Manaus) as against sub-tropical

climate (Curitiba).

Cool paint with the same insulation

as the baseline case exhibits higher

energy efficiency.

Insulation plays a significant role in

the effect of roofing membrane on

heating demand

Energy efficiency of a building is

more sensitive to roof solar

reflectance than thermal insulation,

except for cold climate zone

Annual energy savings achieved in

all cities expect for cities in cold

climate zone

Insulation increases the external

surface temperature of the roof.

Insulation is not needed with cool

roofs in all climatic zones except cold

climates

* Conclusions by observation and analysis require an in-depth data analysis through experimental/empirical study to validate results
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Gaps in Study of Effect of Membrane Color for Energy Efficiency

• Optimal design for the study of the effect of the color of the membrane in roof design for energy efficiency is needed

• Studies that focus on the impact of changing climate on the energy efficiency in relation to different roof modifications (different color,

product type, insulation, etc.) is needed.

• Life-cycle analysis for calculation of energy savings in terms of dollar value is needed over the life of a roof (cost-benefit analysis)

• The evaluation of optimal ratio of cold vs. warm months on annual energy efficiency as a result of different roof modifications (different

color, product type, insulation, etc.) is needed.

• Studies did not account for aging, soiling, and weatherability of the cool material during the life span of the building

• Impact on local air temperatures and the impact of rooftop cooling on street-level air temperatures by multiple cool roofs is yet to be

evaluated

• Detailed experimental and simulation analyses need to be performed for cold and continental climatic conditions to investigate their

thermal output and also the relevant compensation strategies to outperform this negative output need to be developed.

• Increase in occupant comfort with the application of cool roof and altering the albedo value is needed.
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Manufacturers
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Manufacturer 

Websites

Searching the 

Website and 

brochures 

• Brochures were 

studied

• Website were 

searched for roof 

types

02
Claims

Finding 

Sustainability Claims

All claims were 

studied and relevant 

claims to 

sustainability were 

selected 

03
Certification

Finding basis for 

claims

• Internal or 

external Claims

• Some claims 

were based on 

Certification and 

Standards

04

Types of roof and 

Claims

• 17 Manufacturers 

were identified

• Roof Types 

(Single-Ply and 

Multi-Ply) were 

searched

01
Identifying 

Manufacturers

Framework to document manufacturer claims
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Manufacturers* TPO PVC EPDM Bituminous

A* ✓ ⤫ ✓ ⤫

B* ✓ ✓ ✓ ⤫

C* ✓ ✓ ✓ ⤫

D* ✓ ⤫ ✓ ⤫

E* ⤫ ⤫ ⤫ ✓

F* ⤫ ⤫ ⤫ ✓

G* ⤫ ✓ ⤫ ✓

H* ⤫ ⤫ ⤫ ⤫

I* ⤫ ⤫ ⤫ ⤫

J* ⤫ ✓ ⤫ ⤫

K* ⤫ ⤫ ⤫ ⤫

L* ⤫ ✓ ⤫ ⤫

M* ✓ ⤫ ⤫ ⤫

N* ✓ ✓ ⤫ ✓

O* ✓ ⤫ ✓ ⤫

P* ✓ ✓ ✓ ⤫

Q* ✓ ⤫ ✓ ⤫

Manufacturer’s roof products

*For privacy, the name of manufacturers is not mentioned
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Claim TPO PVC EPDM Bituminous

UV Resistance ✓ ✓ ✓ ✓

Ozone Resistance ✓ ✓ ✓ ⤫

Durability ✓ ✓ ✓ ✓

High Energy 

Efficiency 

Performance

✓ ✓ ✓ ✓

High Solar 

Reflectance
✓ ✓ ✓ ✓

Emissivity ✓ ✓ ✓ ⤫

Environmentally 

Friendly 
✓ ✓ ✓ ⤫

Number of manufacturers and claims
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7 Manufacturers with EPDM Product

Manufacturers Claims by Roof Type

78%(7) 78%(7)
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Standards UV Resistance Ozone Resistance Durability

High Energy 

Efficiency 

Performance

High Solar 

Reflectance
Emissivity

Environmentally 

Friendly 

CRRC ⤫ ⤫ ⤫ ⤫ ✓ ✓ ⤫

Energy Star ⤫ ⤫ ⤫ ✓ ✓ ⤫ ⤫

California Title 24 ⤫ ⤫ ⤫ ✓ ✓ ✓ ⤫

LEED ⤫ ⤫ ⤫ ✓ ✓ ⤫ ✓

ISO 9001:2015 ⤫ ⤫ ✓ ⤫ ⤫ ⤫ ⤫

ASTM D4601 ⤫ ⤫ ✓ ⤫ ⤫ ⤫ ⤫

ASTM D2178 ⤫ ⤫ ✓ ⤫ ⤫ ⤫ ⤫

FM Standard 4470. ⤫ ⤫ ✓ ⤫ ✓ ⤫ ⤫

ASTM D 622 ⤫ ⤫ ✓ ⤫ ⤫ ⤫ ⤫

ASTM D 6164 ⤫ ⤫ ✓ ⤫ ⤫ ⤫ ⤫

ASTM D570 ⤫ ⤫ ⤫ ⤫ ⤫ ⤫ ⤫

ASTM G154 ✓ ⤫ ✓ ⤫ ⤫ ⤫ ⤫

ASTM C1549 ⤫ ⤫ ⤫ ⤫ ✓ ⤫ ⤫

ASTM C1371 ⤫ ⤫ ⤫ ⤫ ⤫ ✓ ⤫

ASTM D4434 ⤫ ⤫ ✓ ⤫ ⤫ ⤫ ⤫

ASTM D4637 ⤫ ⤫ ✓ ⤫ ⤫ ⤫ ⤫

ASTM D6878 ⤫ ⤫ ✓ ⤫ ⤫ ⤫ ⤫

Claims based on Standards/Certifications
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Standards used by different roof types

Standards TPO PVC EPDM Bituminous Roof Definition

CRRC ✓ ✓ ⤫ ⤫ Solar Reflectance and Emissivity

Energy Star ✓ ✓ ⤫ ⤫ Energy Efficiency, Solar Reflectance And Emissivity

California Title 24 ✓ ✓ ⤫ ⤫ Energy Efficiency, Solar Reflectance And Emissivity

LEED ✓ ✓ ⤫ ⤫ Energy Efficiency And Emissivity, Environmentally Friendly 

ISO 9001:2015 ⤫ ⤫ ⤫ ✓ Effective Application Of The Roofing System

ASTM D4601 ⤫ ⤫ ⤫ ✓ Crack Resistant 

ASTM D2178 ⤫ ⤫ ⤫ ✓ Waterproofing 

FM Standard 4470 ⤫ ⤫ ⤫ ✓ Water-leakage, Corrosion Of Metal Parts

ASTM D 622 ⤫ ⤫ ⤫ ✓ Waterproofing

ASTM D 6164 ⤫ ⤫ ⤫ ✓
Waterproofing (Ultimate Elongation, Tear Strength, Low Temperature 

Flexibility, And Dimensional Stability)

ASTM D570 ⤫ ✓ ⤫ ⤫ Water Absorption Of Plastic

ASTM G154 ⤫ ✓ ⤫ ⤫ UV Resistance Test

ASTM C1549 ⤫ ⤫ ✓ ⤫ Solar Reflectance

ASTM C1371 ⤫ ⤫ ✓ ⤫ Emissivity

ASTM D4434 ⤫ ✓ ⤫ ⤫ Fire Resistance And, Wind Uplift Resistance

ASTM D4637 ⤫ ⤫ ✓ ⤫ Tensile Strength 

ASTM D6878 ✓ ⤫ ⤫ ⤫ Weather Exposure (Only For TPO)
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Standards Claims TPO PVC Bituminous Roof EPDM

CRRC High Solar Reflectance ✓ ✓ ⤫ ⤫

Emissivity ✓ ✓ ⤫ ⤫

Energy Star

High Energy Efficiency Performance, ✓ ✓ ⤫ ⤫

Emissivity ✓ ⤫ ⤫ ⤫

High Solar Reflectance ✓ ✓ ⤫ ⤫

California Title 24

High Energy Efficiency Performance, ✓ ✓ ⤫ ⤫

High Solar Reflectance ✓ ✓ ⤫ ⤫

Emissivity ✓ ✓ ⤫ ⤫

LEED

High Energy Efficiency Performance, ⤫ ⤫ ⤫ ⤫

High Solar Reflectance ✓ ⤫ ⤫ ⤫

Environmentally Friendly ✓ ✓ ✓ ✓

ASTM D570 Durability ⤫ ✓ ⤫ ⤫

ISO 9001:2015 Durability ⤫ ⤫ ✓ ⤫

ASTM D4601 Durability ⤫ ⤫ ✓ ⤫

ASTM D2178 Durability ⤫ ⤫ ✓ ⤫

FM Standard 4470. Durability ⤫ ⤫ ✓ ⤫

ASTM D 622 Durability ⤫ ⤫ ✓ ⤫

ASTM D 6164 Durability ⤫ ⤫ ✓ ⤫

ASTM G154 Durability ⤫ ✓ ⤫ ⤫

ASTM C1549 Solar Reflectance (Ambient Temp) ⤫ ⤫ ⤫ ✓

ASTM C1371 Emissivity ⤫ ⤫ ⤫ ✓

ASTM D4434 Durability ⤫ ✓ ⤫ ⤫

ASTM D4637 Durability ⤫ ⤫ ⤫ ✓

ASTM D6878 Durability ✓ ⤫ ⤫ ⤫

Standards used to support claims by roof types
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Conclusions – Manufacturer

• Manufacturer’s claims were primarily based on certification and standards (not relying on published studies)

• Some of the manufacturer’s were not supported by any certification, standards and published studies

• High Solar Reflectance: One EPDM manufacturer, six TPO manufacturers, seven PVC manufacturers, four bituminous

manufacturers. Each out of a total of seventeen manufacturers.

• Energy Efficiency: Claims could only be verified for seven TPO manufacturers, six PVC manufacturers, and two

bituminous manufacturers. Each out of a total of seventeen manufacturers.

• There is no dedicated certification focused on sustainable measures for EPDM roofing????

• ASTM C1549 and ASTM C1371 standards were used for solar reflectance (ambient temp) and emissivity respectively for

EPDM roofing
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Urban Heat Island Effect
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Reviewing the 

studies

• Abstract

• Methodology

• Result

02
Finding data related 

to UHIE

• Real

World/Simulation

• Used Software

• Location

• Albedo, Solar

reflectance

• Duration of the

Data Capturing

03
Effect on UHIE

How cool roofs 

impact UHIE and  

How is the impact 

measured?

04
Future Path

• UHIE is measured

differently by

different study

05

• Research

Databases

01
Identifying Studies

Framework to document UHIE
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Urban Heat Island Effect – Area and Type of Studies

81%

15%

4%

Simulation

Real World

Literature Review

Total No. of Studies – 25

Simulation – 20

Real World – 4

Literature Review – 1 

Reflectance 

range of roofs

30

40

50

60

70

80

90

Asia - 6 USA - 15 

Albedo range 

of roofs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Software used

• DOE 2.1

• Energy Plus

• ENVI-met

• Trnsys

• U-HRLDAS

• WRF

Other - 5 

Types of Studies

n = 25
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Urban Heat Island Measurement Parameters

CO2 emission 

reduction, 3

Cooling efficacy, 1

Energy savings, 2

Heat Flux 

reduction, 4

Heat gain 

reduction, 1

Temperature 

reduction, 14

Urban Canyon 

temperature 

reduction, 1 Ozone concentration 

reduction, 1

Parameters Definition

Roof Surface Temperature (reduction) Process of becoming cooler

Heat Flux (reduction)
The rate of heat energy that passes through a 

surface

Ozone concentration/pollution 

(reduction)

Ozone (O3) is a gas molecule composed of three 

oxygen atoms. Often called "smog," ozone is 

harmful to breathe. Ozone aggressively attacks 

lung tissue by reacting chemically with it

Annual energy savings Savings in terms of energy efficiency

CO2 emissions
Mass of greenhouse gas or air pollutant emitted 

per unit energy supplied to the grid

Urban Canyon temperature

An urban canyon (also known as a street canyon) 

is a place where the street is flanked by buildings 

on both sides creating a canyon-like environment.

UHI Measuring Parameters

• Cool Roof impact on UHIE is studied differently by different publications
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Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a 

regional climate model (Methodology) – Sharma et. al, 2015

Roof Type Modification

Conventional Albedo = 0.2

Green Roof green roof fraction 0.25, 0.5, 0.75, 1

Cool Roof albedo = 0.85

Type of Study Simulation - WRF

Location Chicago

Duration 16-18 Aug 2013

UHI Effect
difference between urban and rural 

temperatures

❖ Comparison of simulated and observed study

Sensible Heat Flux (SH)

❖ WRF Model Setup (Chicago Metropolitan Area)

Terms Modification

Heat Flux
Flow of energy per unit of area per 

unit of time

Metropolitan 

Area
densely populated urban core

WRF model numerical weather prediction system

Location Chicago
❖ Conventional Roof has the highest Surface Temperature

❖ Cool roof has the lowest surface temperature
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Findings/Limitation

Daytime Surface Temperature 

Reduction (Cool Roof)
7 – 8 C

Heat Flux (Cool Roof) 150 (W/M2)

Horizontal Wind Speed Decreased (near-surface 10m)

Limitation
2 days data capturing, Summer, 

Simulation

❖ Cool Roof Net Radiation has been lower than conventional roof throughout the data capturing

period

❖ Cool roof Storage Heat Flux has been lower than conventional Roof throughout the data

capturing period

Modifications

Rn
The net radiation flux at the surfaces: the balance between incoming and outgoing energy at 

the top of the atmosphere

SH
Sensible Heat Flux: the transfer of heat caused by the difference in temperature between the 

sea and the air

LH Latent Heat Flux: Flux of energy from the Earth's surface to the atmosphere

G
Storage Heat Flux: is the net uptake or release of energy (per unit area and time) by sensible 

heat changes in the urban canopy air layer, buildings, vegetation, and the ground

Surface Energy Fluxes for Cool, Green and Conventional roof

Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a 

regional climate model (Result) - Sharma et. al, 2015
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The effectiveness of cool and green roofs as urban heat island mitigation strategies – Li et. al, 2014

Increasing cool roof fractions can also reduce the surface 

and near-surface urban heat islands

e): changes in the surface urban heat island based on cool 

roof coverage fractions

• increasing cool roof fractions can significantly reduce the

daytime surface urban heat island (≈4 C), but in night (≈1

C)

f): change in near surface temperature (2m air temperature) 

reach their maxima 

• Increasing cool roof fraction during daytime has more

impact than nighttime

g, h): corresponding reductions in the surface and near-

surface urban heat islands

• approximately 95% cool roof coverage is needed in order

to reduce the near-surface urban heat island by 0.5 °C

Roof Type Modification

Conventional Albedo=0.3

Green green roof fraction 0.1, 0.2, 0.3, 0.5, 0.7, 1

Cool albedo=0.7

Cool Fraction (10%, 20%, 50%, 30%, 70%, 100%)

Type of Study Simulation - WRF

Location Baltimore-Washington

Duration 7 - 10 June 2008

f): changes in the sensible 

heat flux

cool roof are equally effective 

in reducing the sensible heat 

flux

g): changes in the latent heat 

flux

the increase in cool roof 

fraction reduces the latent 

heat flux over the urban 

surface.

h): Change in heat storage

heat storage decreases 

significantly during daytime 

as the cool roof fractions 

increases

(e)

(f)

(g)

(h)

(h)

(g)

(f)
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Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy 

balance – Fabiani et. al, 2019

Roof Type Modification

Roof thickness 0.3 m

Cool Roof Albedo = 0.55

Dark Roof Albedo = 0.15

Thermochromic 

Roof Coating
albedo = 0.4

Type of Study Experimental

Location Laboratory

Comparison of simulated and the experimental temperature (October 23 - 26th 2011)

Terms Modification

Heat Flux
Flow of energy per unit of area per 

unit of time

Metropolitan 

Area
densely populated urban core

WRF model numerical weather prediction system

Location Chicago
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Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy 

balance – Fabiani et. al, 2019

Findings - Cold Season

Roof

Average Roof 

temperature for 

a year

Average 

Outward Heat 

Flux for a year

Average Inward 

Heat Flux for a 

year

Thermochromic Roof 

Coating
12.8 180 -48

Dark Roof 14.6 261.6 -42.6

Cool Roof 11.3 101.6 -51.8

*Cool roof always presents the lowest surface temperature and heat fluxes (11.3 C and 101.6 W/m2)

Findings - Warm Season

Roof

Average Roof 

temperature for 

a year

Average 

Outward Heat 

Flux for a year

Average Inward 

Heat Flux for a 

year

Thermochromic Roof 

Coating
15.8 260 -40.6

Dark Roof 14.3 261.6 -40.5

Cool Roof 10.6 123.3 - 50.6

Terms Modification

Outward 

Heat Flux

Flow of energy per unit of area per 

unit of time

Inward Heat 

Flux

adding heat flux to the total flux 

across the selected boundaries

WRF model
numerical weather 

prediction system

Thermochro

mic material

thermochromic materials, i.e.

parcels that respond to the 

surrounding environment by 

reversibly changing their optical

properties as a function of 

temperature
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Conclusions - Effect of Cool Roofs on Urban Heat Island (UHI) 

• UHI Mitigation Strategies are dependent on urban land use characteristics and meteorological conditions.

• Studies indicate that as the green and cool roof fractions increase, the surface and near-surface UHIs at the time when the surface and

near-surface temperatures reach their maxima are reduced almost linearly.

• Increase in albedo is an effective way of reducing UHI.

• Cool roofs exhibit higher cooling efficacy in conditions of higher solar radiation, lower relative humidity, and less precipitation.

• Cool roofs can reduce the surface and near-surface UHIs when their performances are not hindered by dirt accumulation that reduces

albedo (cool roofs).

• Keeping cool roof fraction constant and increasing albedo value could allow an additional reduction in the surface UHI.

• Citywide adoption of cool roofs could be a viable way to meaningfully offset the daytime UHI effect.

• Cool roofs change the surface energy balance by reducing solar radiation.

* Conclusions by observation and analysis require an in-depth data analysis through experimental/empirical study to validate results

Sharma et. al, 2015; Li et. al, 2014; Fabiani et. al, 2019

Conclusions by Publications*
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